Creating and Displaying DataFrames in Pandas for Data Analysis

Introduction to DataFrames in Pandas

Overview of Pandas and DataFrames

Pandas is a powerful Python library used for data manipulation and analysis. It provides high-performance, easy-to-use data structures and data analysis tools. One of the core data structures in pandas is the DataFrame, which is a two-dimensional table of data with columns of potentially different types.

A DataFrame is similar to an Excel spreadsheet or a SQL table. Each column in a DataFrame represents a variable, and each row represents a single observation. DataFrames are ideal for storing and manipulating datasets that contain multiple variables and observations.

Creating a DataFrame

To create a DataFrame in pandas, you can use the pd.DataFrame function, which takes a dictionary-like object as input, where each key corresponds to a column name and each value is the corresponding data.

Here’s an example of creating a simple DataFrame:

import pandas as pd

# Create a dictionary with data
data = {'Name': ['John', 'Anna', 'Peter', 'Linda'],
        'Age': [28, 24, 35, 32],
        'Country': ['USA', 'UK', 'Australia', 'Germany']}

# Create a DataFrame from the dictionary
df = pd.DataFrame(data)

print(df)

Output:

     Name  Age    Country
0   John   28       USA
1   Anna   24         UK
2  Peter   35  Australia
3  Linda   32    Germany

Displaying and Adding a Column to a DataFrame

In the original question, the user created a DataFrame called date using the following code:

date = data.groupby(pd.to_datetime(data['Completion Date'], format='%d.%m.%Y').dt.month)['Learning Hours'].sum()
date.index = pd.to_datetime(date.index, format='%m').month_name().str[:3]
date.rename_axis('Month').reset_index(name='Learning hours')

However, the user was unable to call the date DataFrame by its name in other cells.

To fix this issue, we need to assign the output back to the date variable and then create a new column.

Assigning Output Back to the date Variable

The first step is to reassign the output of the groupby operation back to the date variable:

date = data.groupby(pd.to_datetime(data['Completion Date'], format='%d.%m.%Y').dt.month)['Learning Hours'].sum()

This will update the date variable with the new values.

Creating a New Column

Next, we can create a new column called Required with values 430 in all rows:

date['Required'] = 430

However, this code assumes that the date DataFrame is already created. If you want to add this step to the original code, you would need to reassign the output of the groupby operation back to the date variable.

Alternative Solutions

The user suggested alternative solutions using different methods:

  1. Using the rename method:
months = (pd.to_datetime(data['Completion Date'], format='%d.%m.%Y')
          .dt.strftime('%b')
          .rename('Month'))
date = (data.groupby(months, sort=False)['Learning Hours']
        .sum()
        .reset_index(name='Learning hours'))
date['Required'] = 430
  1. Using the assign method:
months = (pd.to_datetime(data['Completion Date'], format='%d.%m.%Y')
          .dt.strftime('%b')
          .rename('Month'))
date = (data.groupby(months, sort=False)['Learning Hours']
        .sum()
        .reset_index(name='Learning hours')
        .assign(Required = 430))

These solutions use the groupby method with a different approach to create the date DataFrame.

Conclusion

In this article, we discussed how to display and add a column to a DataFrame in pandas. We covered the basics of DataFrames, including creating and manipulating data using the pd.DataFrame function. We also presented alternative solutions for adding a new column to an existing DataFrame.

Code Blocks

Creating a DataFrame

import pandas as pd

# Create a dictionary with data
data = {'Name': ['John', 'Anna', 'Peter', 'Linda'],
        'Age': [28, 24, 35, 32],
        'Country': ['USA', 'UK', 'Australia', 'Germany']}

# Create a DataFrame from the dictionary
df = pd.DataFrame(data)

print(df)

Grouping Data and Adding a Column

import pandas as pd

# Create a DataFrame
data = {'Name': ['John', 'Anna', 'Peter', 'Linda'],
        'Age': [28, 24, 35, 32],
        'Country': ['USA', 'UK', 'Australia', 'Germany']}
df = pd.DataFrame(data)

# Group data and add a column
date = df.groupby(df['Country'].dt.month)['Age'].sum().reset_index()
date.rename(columns={'Age':'Total_Age'},inplace=True)
date['Required'] = 430

print(date)

Using Alternative Solutions

import pandas as pd

# Create a DataFrame
data = {'Name': ['John', 'Anna', 'Peter', 'Linda'],
        'Age': [28, 24, 35, 32],
        'Country': ['USA', 'UK', 'Australia', 'Germany']}
df = pd.DataFrame(data)

# Group data and add a column using rename
months = (pd.to_datetime(df['Country'].dt.strftime('%b')).rename('Month'))
date = df.groupby(months, sort=False)['Age'].sum().reset_index()
date.rename(columns={'Age':'Total_Age'},inplace=True)
date['Required'] = 430

print(date)

# Group data and add a column using assign
months = (pd.to_datetime(df['Country'].dt.strftime('%b')).rename('Month'))
date = df.groupby(months, sort=False)['Age'].sum().reset_index()
date.assign(Required=430)

print(date)

Note that I have used the rename method to rename the column ‘Total_Age’ in this code block.


Last modified on 2023-09-12