Vector Autoregression (VAR) with Rolling Window
Introduction
Vector Autoregression (VAR) is a statistical technique used to model the relationships between multiple time series. In this article, we will explore how to implement VAR with a rolling window using R and parallel computing.
Problem Statement
The original question posed by the OP describes two main issues:
- The output matrices
rolling.var.coefandvar.residshave incorrect lengths, resulting in only a few coefficients being calculated for the first days. - The current approach requires calculating VAR with a fixed window size using separate functions.
Solution Overview
To address these issues, we will develop a new function that calculates VAR with a rolling window in parallel. This function, rollvar, will handle both coefficient and residual calculations efficiently.
Parallel Computations Using Linux/Mac
For parallel computations on Linux/mac systems, we can utilize the pbapply package, which provides built-in support for parallel processing.
## Load necessary packages
library(vars)
library(pbapply)
## Define data and parameters
data <- data.frame(Canada)
window <- 10
## Define function to calculate VAR with rolling window
caller <- function(j) {
var.2c <- VAR(data[(1:window)+j,], p=1, type = "const")
B <- Bcoef(var.2c)
r <- resid(var.2c)
list(B, r)
}
## Calculate VAR with rolling window in parallel
out <- pbapply::pblapply(0:(nrow(Canada)-window), caller, cl = makeCluster(detectCores() - 1, type = "FORK"))
## Stop cluster and retrieve results
stopCluster(cluster)
Parallel Computations Using Windows
For parallel computations on Windows systems, we can utilize the psOCK package to create a process-based cluster.
## Load necessary packages
library(vars)
library(pssock)
## Define data and parameters
data <- data.frame(Canada)
window <- 10
## Define function to calculate VAR with rolling window
caller <- function(j) {
var.2c <- VAR(data[(1:window)+j,], p=1, type = "const")
B <- Bcoef(var.2c)
r <- resid(var.2c)
list(B, r)
}
## Calculate number of cores and create cluster
no_cores <- detectCores() - 1
cluster <- makeCluster(no_cores)
## Export necessary data and functions to the global environment of the cluster workers
clusterExport(cluster, c("Canada", "data", "window", "caller"), envir = environment())
clusterEvalQ(cluster, library(vars))
## Moving window estimation using pblapply
out <- pblapply(0:(nrow(Canada)-window), caller, cl = cluster)
## Stop cluster and retrieve results
stopCluster(cluster)
Rollvar Function
The rollvar function is a wrapper around the caller function that takes care of calculating VAR with a rolling window in parallel.
rollvar <- function(data, window, nrow) {
caller <- function(j) {
var.2c <- VAR(data[(1:window)+j,], p=1, type = "const")
B <- Bcoef(var.2c)
r <- resid(var.2c)
list(B, r)
}
out <- pbapply::pblapply(0:(nrow - window), caller, cl = makeCluster(detectCores() - 1, type = "FORK"))
stopCluster(cluster)
return(out)
}
Usage
To use the rollvar function, simply pass in your data and window size as arguments.
data <- data.frame(Canada)
window <- 10
nrow <- nrow(data)
out <- rollvar(data, window, nrow)
This will calculate VAR with a rolling window of size window on each row of the input data data, using multiple cores to speed up computation.
Conclusion
In this article, we have developed a solution for calculating Vector Autoregression (VAR) with a rolling window in parallel using R. The rollvar function is a convenient wrapper around the original code that handles both coefficient and residual calculations efficiently. With parallel computing, you can significantly speed up your computations on Linux/mac systems or Windows.
Last modified on 2024-09-21